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stirred a t  room temperature for 21 hr, then quenched and worked 
up as described for unlabeled 2. T h e  products h a d  the  fol lowing 
nmr spectra (CC14): 4, 6 1.05 (s, 3 H), 1.08 (s, 3 H) ,  1.60 (m, 3 H), 
1.72 (m, 3 H), 1.98 (s, 3 H);  14, B 0.90, 1.03, 1.25, 1.75, and 1.95, 
a l l  s, 3 H; 15, 6 1.21 (s, 3 H),  1.46 (d, 3 H, J = 1.7 Hz), 1.83 (s, 3 
H), 4.95 (m, 3 H) ,  5.30 (br s, 1 H); 16, 8 1.17 (d, 3 H, J = 7.5 Hz), 
1.80 (5, 3 H) ,  2.70 (4, 1 H, J = 7.5 Hz), 5.10 (br s, 1 H), 5.27 (br s, 1 
H) .  

A solut ion of 2**t ( lacking the signals a t  B 2.10 and 1.48) in 
TFA was allowed t o  rearrange in the amounts and manner de- 
scribed for 2*. T h e  products h a d  the  fol lowing nmr spectra 
(CC14): 4, 6 1.05, 1.08, 1.60, and 1.98 (a l l  s, 3 H);  14, 6 0.90, 1.03, 
1.25, and 1.75 (a l l  s, 3 H);  15, 8 1.46 (d, 3 H, J = 1.7 Hz), 1.83 (s 3 
H), 4.95 (m, 3 H), 5.30 (b r  s, 1 H);  16, B 1.80 (s, 3 H), 2.70 (br s, 1 
H), 5.10 (br s, 1 H), 5.27 (br s, 1 H). 
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In general, the acid-catalyzed rearrangement of epoxy 
ketones is initiated by protonation of the epoxide oxygen 
at0m.l We describe here the rearrangement of an epoxy 
ketone to two principal products, one of which appears to 
arise from protonation of the carbonyl oxygen. 

3,4-Epoxy- 1,3,4,5,6,6-hexamethylbicyclo[3.l.0]hexan-2- 
one (2) was prepared in good yield from the corresponding 
unsaturated ketone l2 and rn-chloroperbenzoic acid. The 
structure is based on the method of synthesis and spectral 
properties. The vC-0 in 2 was a t  1715 cm-l  (1690 cm-l  in 
1). The nmr spectrum3 showed that  all methyl signals 
were aliphatic (6 51-39), and europium shift reagent re- 
moved the accidental degeneracy of three methyls a t  6 
1.03 and gave a spectrum with six sharp, equal singlets. 

Vpc and nmr analysis showed that only a single stereoiso- 
mer of 2 was produced; the equal chemical shifts of the 
two methyl groups at C-6 suggest that the epoxide ring is 
trans to the cyclopropane ring. Epoxide prepared from 1 
with a CD3 group at  C-4 lacked the singlet a t  6 1.39 (2"); 
epoxide prepared from 1 with CD3 groups at C-1 and C-4 
lacked the singlet a t  6 1.39, and that a t  6 1.03 was reduced 
in area to six protons (2*1?). The labeling and Eu-shift 
data support the nmr assignments shown in the structure. 
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Treatment of 2 with trifluoroacetic acid (TFA) at  0" for 
10 min resulted in complete rearrangement to 3 and 4. 
Also formed was a small amount of 5 which is known to 
arise from the dealkylation of 3.4 The properties and 
structure proof of 3-5 are described e l~ewhere .~  
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A plausible mechanistic route to 3 is shown in Scheme 
I. Protonation of the epoxide oxygen by ring opening in a 
direction which places the positive charge remote from 
the carbonyl group gives the intermediate cyclopropylcar- 
binyl cation A .  Ring opening gives the homoallyl cation B, 
or alternatively B may be formed directly from protonated 
2 in a concerted process. Proton loss and dehydration 
gives 3. Deuterium-labeling results5 are consistent with 
this mechanism; 2* gave 3* and 2**t gave 3*3?. 
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A mechanism for obtaining 4 from 2, consistent with 
the labeling results, is shown in Scheme 11. Protonation at 
the carbonyl oxygen gives C, which undergoes a cyclopro- 
pyicarbinyl rearrangement to D. Such rearrangements are 
well established and exceedingly facile in the case of pro- 
tonated Ring opening and proton loss would lead to 
the a$-epoxide of hexamethyl-2,4-cyclohexadienone (6). 
Further rearrangement in a normal manner4 should lead 
to  4. No evidence for the presence of 6 in these solutions 
was obtained, and we must assume that, if formed, it rear- 
ranges to  4 under the reaction conditions.7 
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Experimental Section8 
3,d-Epoxy- 1,3,4,~,6,6-hexamethylbicyclo [3.1 . O ]  hexan-2-one 

(2). 'To a solution of 1.2 g (6.75 mmol) of 1,3,4,5,6,6-hexamethyl- 
bicyclo[3.1.0]hexen-2-one ( 1 ) 2  in 20 ml of methylene chloride was 
added a solution of 1.25 g (7.2 mmol) of m-chloroperbenzoic acid 
in 20 ml of methylene chloride. The mixture was stirred at  room 
temperature for 4 hr (nmr monitoring showed complete reaction 
at this time), the solvent was removed by rotary evaporation, pe- 
troleum ether (bp 30-60") was added, and the m-chlorobenzoic 
acid was removed by filtration. The filtrate was washed with 
aqueous NaHC03 and saturated NaCl solution, dried (MgS04), 
and evaporated to give 1.17 g (90%) of 2. Vpc ( 5  ft X 0.125 in., 

10% FFAP on Chromosorb W, 150", 30 ml/min Nz) showed only a 
single peak, retention time 12.5 min: ir (neat) 1715 (s), 1460 (m),  
1395 (m) ,  1080 (w), 1025 (w), 940 (w),  860 cm-I (w); nmr (CC14) 
see structure; mass spectrum (70 eV) m/e 194 (M+) .  

Anal. Calcd for C1~HlsOz: C, 74.19; H, 9.34. Found: C, 74.20; 
H,  9.43. 

Starting with I* (lacking the methyl signal at  6 1.88),6* the re- 
sulting 2* had the following nmr spectrum (Cc14): d 1.03 (s, 9 H), 
1.23 (s, 3 H),  1.26 (s, 3 H) .  Starting with l * % t  (lacking the methyl 
signal a t  6 1.88 and having the singlet at  6 1.10 correspond to only 
3 H)2 the resulting 2*3t had the following nmr spectrum (CC14): 6 
1 . 0 3 ( ~ , 6 H ) , 1 . 2 3 ( ~ , 3 H ) , 1 . 2 6 ( ~ , 3 H ) .  

Rearrangement of 2 i n  TFA. A solution of 2 (100 mg, 0.517 
mmol) in 2 ml of TFA was stirred at  0" for 10 min, then poured 
into a slurry of aqueous XaHCO3 and ether. The ether layer was 
separated, washed successively with aqueous NaHC03 and NaCl 
solutions, dried (MgSOd), and, evaporated to leave 90 mg of a 
light yellow oil which was analyzed by vpc (5 ft X 0.125 in., 10% 
FFAP on Chromosorb W, l55", 30 ml/min Nz). There were three 
components (retention time, a): 5-isopropenyl-4-methylene- 
2,3,5-trimethyl-2-cyclopentenone (3, 1.9 min, 71), 2-acetyl- 
2,3,4,5,5-pentamethyl-3-cyclopentenone (4 ,  1.6 min, 19) and 4- 
methylene-2,3,5-trimethyl-2-cyclopentenone ( 5 ,  1.3 min, 10). The 
products were separated by preparative vpc (10 ft X 0.25 in., 20% 
FFAP on Chromosorb W, 160", 25 ml/min He) and identified by 
comparison of their ir and nmr spectra with those of authentic 
~ a m p l e s . ~  

Rearrangement of Labeled 2. The same experimental proce- 
dure as described for unlabeled 2 was used. Starting with 2* the 
products had the following nmr spectra: 3, d 1.21 (s, 3 H) ,  1.46 (d, 
3 H, J = 1.7 Hz), 1.83 (s, 3 H),  4.95 (m, 3 H),  5.30 (br s, 1 H) ;  4, d 
1.05, 1.08, 1.98 (s, 3 H each), 1.60, 1.72 (4, 3 H each, J = 1.5 H Z ) . ~  
Starting with 2*3t the products had the following nmr spectra: 3, 
d 1.46 (d, 3 H, J = 1.7 Hz). 1.83 (s, 3 H), 4.95 (m, 3 H), 5.30 (br s, 
1 H); 4, 6 1.05, 1.08, 1.60, 1.98 (s, 3 H each). 
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Analyses were performed by Spang Microanalytical Laboratory, A n n  
Arbor, Mich. Nmr spectra were internally referenced against tetra- 
methylsiiane. 
Compound 5 was not examined, since the mechanism of its forrna- 
tion from 3 has already been establi~hed.~ 


